ONSET OF FLUIDIZATION IN A CONICAL SYSTEM

Yu. A, Buevich and S. M. Ellengorn UDC 532.546

The onset of instability is considered for a granular bed in a plane-parallel or conical system,
and the appropriate critical parameters are calculated.

A granular bed in a container of variable cross section becomes fluidized under certain conditions, and
the critical pressure difference is of some interest because this differs considerably from the value for a bed
of constant cross section. Particular practical interest attaches to devices converging downward [1, 2]. Here
we describe a simple model for the onset of fluidization when the angle of the cone is not too large, with the
result that the radial gas flux within a layer can be considered as very largely homogeneous. The main assump-
tions are very largely derived from those of [3] for granular media flowing through conical bunkers.

Figure 1 shows the bed; we assume that the gas flow in the bed is radially symmetrical, while the lower
and upper boundaries are described by Ry =const, R =const, respectively. These assumptions are closely re-
lated and greatly simplify the analysis without altering the physical essence of the matter. In principle, it
would be simple to consider a layer with planar boundaries, as has been done for granular media in conical
bunkers [4, 5], but in that case the assumption of radial symmetry would become internally contradictory.

For simplicity, we restrict consideration to the stresses in the bed in a simplified one-dimensional set-
ting, as used in deriving Jansen's formula, We assume that the transverse normal stress og is proportional
to the radial stress o = o, the coefficient of proportionality being ® and characterizing the layer packing, We
also assume that there is no adhesion between the particles and no residual stress that does not vanish when the
force of gravity tends to zero. These factors [6, 7] can influence the fluidization conditions considerably in an
apparatus with vertical walls, but in the present ingtance they may be relatively unimportant by comparison
with the effects of variation in the cross section and the retaining effect of the walls.

Consider the equilibrium of an element (r, r + dr) in a planar layer; the condition for balance between
.the forces given
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Here it is assumed that the limiting friction is attained at the walls; the upper and lower signs refer, respec-
tively, to situations where the bed sinks downward or conversely is impelled upward by the hydraulic forces.
We assume 6 small, so 2sin(6/2) ~ § and 2k/6 > 1, and (1) gives
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We use a two-term Erland formula [8] to represent F(q, r), i.e.,
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The flow rate g is reasonably small, so the force of gravity produces most of the state of stress in the
bed; then the upper sign is taken in (2), and the obvious boundary condition is o(R) =0; the solution to (2) the_n
takes the form
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Fig. 1. The apparatus.

This describes the stress distribution in the bed when the gravitational forces predominate, and there is a
maximum stress at some critical value of the coordinate, which is dependent on q [3-5]. Clearly (4) is mean-
ingful only for q < gy, where the critical value q; is determined by the condition that the stress at the lower
boundary of the layer becomes zero. The infiltration speed u = /R at the upper boundary is introduced, and
the corresponding critical value u; is then given by )
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The value q;/R, corresponding to u, at the lower boundary exceeds the minimum fluidization speed ux de-
fined by

u?+ tuy—n =0 )
Consequently, there is a region below the layer in which the hydraulic forces exceed the weight of the particles
if q =q;. ,
If q > q;, the solution of (4) ceases to be correct for some region Ry < r < rx(q); if as before we assume

that limiting friction applies at the walls, then the stress for this region can be derived by solving (2) with the
lower sign in front of the last term on the left and with the boundary condition o(Ry) =0, which gives
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The critical value of the coordinate r,(q) is then calculated from the condition of equality of the stresses de-
fined by (4) and (8), which results in the following equation:
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The range of application of (8) increases monotonically with q until the upper boundary reaches the upper
edge of the layer at some critical flow rate g =q, > q;; the corresponding critical speed u, =q,/R at the upper
boundary satisfies
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Fig, 2, a) Critical Reynolds number correspond-
ing to loss of stability as a function of the Archi-

medes number Ar for £y ~ 0 and various m: b) Re

as a function for t; for various Ar for m = 2 (solid
lines) and m =3 (dashed lines).

The stresses are everywhere defined by (8) if q =q;, and they become zero at both boundaries of the bed; it is
clear that no equilibrium state exists for the bed if q > q, (or u > uy), so u, may be taken as representing onset
of fluidization. Note that this value is less than the minimum fluidization speed defined by (7).
It is convenient to put (10) in standard form by introducing the Reynolds and Archimedes numbers as
follows:
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Then simple transformation via (3) and (6) converts (10) for € =0.4 to
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This equation simplifies somewhat in the important particular case t; < 1 provided that 6 — 0 (m — =), i.e.,
for an equipment with vertical walls, whereupon (12) takes a standard form [9]:

Re? + 51.4Re - 0.0366Ar = 0. (13)

We process (12) as for (13) in [10] to get a simplified formula:
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This formula coincides with that derived in [10] for m — ~; the relationship between the critical Re and Ar im-
plied by (12) is shown in Fig. 2a for various m for the limiting case t; —~ 0. TFigure 2b shows Re as a function
of t; for two values of m and various Ar.

The model of [11] implies that the fluidized state should occur when q; is reached, because then a point
appears where the normal stress is zero. In fact, the transition extends up to the second critical flow rate
q;, which corresponds to stability loss in the bed as a whole, and this value may exceed q; substantially, par-
ticularly for t; small.

The following is the pressure difference across the bed for q < q:
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The critical pressure difference for stability loss is then derived for q = g3, the result being very much de-
pendent on the size R, of the base of the bed; the latter is reflected in empirical formulas for Ap, as in [1, 2],

From (15) we readily get simplified formulas that apply approximately in various particular situations.
For instance, if the particles are not too small, with the result that the second term in (3) is no less impor-
tant than the first, we have that the second term in (15) plays the main part for Ry < R, and the height of the
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bed is H = R. The width of the base of the bed is L ~ 2Rgtan(6/2), which gives us the following formula for the
critical pressure difference:

Ap ~ [Bu2H] (211 tg % / L) _ (16)

(u, has here been replaced by ux, which involves a small error), and the cofactor in the brackets is the criti-
cal pressure difference for a bed with vertical boundaries, A formula of the same type has been suggested
elsewhere [2].

In the above we have considered an element of a bed in a triangular bunker with inclined walls; all the re-
sults are however readily extended to a bed in an axially symmetrical cone. If g denotes the flow in unit solid
angle, the above approximations for ¢ give us instead of (2) that
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with m still defined by (2), while & is now the angle of the cone.

The analogs of (4) and (8) are correspondingly
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The linear velocity at the upper boundary of the bed is now defined by u =q/R?, while the critical value uy
is obtained subject to the condition that (19) becomes zero for r =R. We use (11) to get instead of (12) in that
case that
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This expression again becomes (13) for m — », which applies for an equipment with vertical walls. A general
form of the relationship of Re to t; and Ar corresponding to (20) is as shown in Fig, 2.

The pressure difference across the axially symmetrical layer is

R
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A formula of the type of (16) is obtained for a bed of reasonably small particles if gq < aR% and Ry < R,

If we neglect the frictional forces at the wall, then the result for a granular bed in 2 conical system has
been derived previously [12], where the critical flow speed corresponding to loss of stability was defined from
the condition for balancing the weight of the bed (as corrected for the upthrust). It is clear that the situation
with vanishingly small friction is described by the above formulas if we take the particular case m = 0. The
equation for the Reynolds number corresponding to the onset of fluidization derived from (20) with m =0 coin~
cides with the equation derived from [12] for 6 small. Figure 2a shows that any increase in the friction at the
wall tends to increase this number, so the value calculated without correction for the friction must be some-
what too low. This is confirmed to some extent by the data of [13], in which measurements were compared
with calculations from various sources.

The state of the bed after stability loss (i.e., for q > q,) cannot be described within the framework of this
theory; however, it is possible to have two limiting situations if q is not too greatly in excess of the critical
value, and these we discuss briefly. First of all, the layer as a whole may remain immobile but shift upward
by an amount such that the new boundaries are described by the coordinates R}) > R, and R' > R, with the condi-~
tion for constancy of volume of the bed giving R'* — Ry? =R? ~ R} if we neglect any possible change in the pro-
portion of voids. The second equation needed to determine R' and R} as a function of q is derived by setting
the stress at the upper boundary r =R' equal to zero. This stress at the upper boundary is still described by
(8) or (19) with q > q,, but with R, replaced by Rj}.
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Fig. 3. a) Critical flow rate Q, =6q, (m%/h)
as a function of height of granular bed H (cm)
for various 8; b) pressure difference ap (kef/
cm?) as a function of flow rate Q =6q (m%h) for
various 6, The solid lines are from theory,
while the points are from experiment for @ as
follows: 1) 10°; 2) 15; 3) 20; the points 4 repre-
sent a gas jet breaking through the immobile
bed.

The behavior of this equation for realistic m indicates that t = R)/R' increases rapidly from the small ini-
tial value t, as q increases, particularly over a narrow range immediately to the right of q,; correspondingly,
there is a rapid increase in R}, with the result that the pressure difference is still defined by (15) or (21), al-
though for q > q, the result is a very rapidly decreasing function of q.

The existence of this state requires that the lower surface is stable against fall of individual particles;
it is clear [14] that this requires that the relative velocity of the gas is on the order of the entrainment speed
(is less than the latter by not more than a factor 2-3). It is clear that this condition is violated as R} in-
creases, so the lower surface becomes unstable, with the consequence that the lower part of the bed or even
‘the entire bed becomes essentially fluidized. It is clear that this stage can be attained if q is increased suffi-
ciently slowly provided that the coefficient of dynamic friction at the wall is not much less than the static value.
If these conditions are not met, the bed suddenly jumps upward when the point g = q, is reached, and random
perturbations that prevent the formation of a sharp lower boundary may become very strong. In that case, the
second limiting state is more probable, in which the upper part of the bed is immobile, while the lower part is
fluidized. The stability is then lost when q increases further, with the result that the entire bed becomes
fluidized or a jet system is set up within the apparatus,

The above general picture is confirmed by trials on fluidization of a granular bed in a trough with sloping
sides. The bed consisted of polystyrene particles of diameter 2.5 mm, while 6 took the values 10, 15, 20,
and 30°., The air was injected through a slot of width 2 mm, while the length of the trough was 100 mm; the
height of the bed varied within wide limits. The critical flow rate 8¢, and the pressure differences across the
bed before and after onset of instability were determined. Figure 3 compares the theoretical results with the
measurements. The calculations were based on & =0.4, while kn was determined from a single experiment.
Figure 3 shows satisfactory agreement.

If the flow rate is gradually increased above the critical value, the layer of material rises as a solid
body without any appreciable signs of loss of continuity; the lower boundary is at first stable, with just a few
particles circulating in the space under the bed. A further increase in the flow rate produces a new upward
shift, with some partial loss of stability in the lower boundary (more circulating particles), and the proportion
of these continues to increase with q until there is no longer a clear-cut division between the fluidized and un-
fluidized parts. Channels can arise before the value g4 =uxR is reached, which may penetrate to the upper
part, and periodic bubbles break through to the upper surface as q is increased further, after which a steady-
state fountain sets in, Figure 4 shows characteristic pictures reflecting the state of the bed. These various
types of fluidization have also been reported elsewhere [13].

These considerations can also be used in approximate analysis of a horizontally unbounded bed injected
with a gas jet; the gas enters through a slot or hole into the base of the bed, which is accompanied by the
formation of cavities containing rapidly circulating particles, whose size increases with the gas flow rate.
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Fig. 4. The characteristic states of a granu-
lar bed, photographs arranged in order of in-
creasing flow rate.

When these cavities attain about 70% of the height of the bed, there is a tendency for them to break through to
the surface and produce a stable fountain, The state before breakdown is one with the bed distorted, with a
convex area on the surface of the bed.

Most of the gas passes through the bed near the walls, and the deformed area on the surface corresponds
to the base of the bed. There is thus a clear analogy between the above cavities and the space under the immo-
bile part of the bed in a conical or through system, and the above equations can be applied as an approximation.
This approach is also justified by a comparison of the observed and theoretical relationships for the critical
flow rate corresponding to breakthrough of a jet from a slot (Fig. 3a). The first curve was derived in experi-
ments with beds of the above polystyrene particles; the second was calculated from the above formulas with the
observed 8 of 25°, while the coefficient of friction k was taken as parameter, Here again the agreement be~
tween theory and experiment was satisfactory.

NOTATION

a is the particle radius;

do, 4 are the density of gas and particle material;
F is the hydraulic force;

g is the acceleration due to gravity;

H is the height of bed;

k is the wall friction coefficient;

L is the transverse size of lower boundary;

m is the parameter in (2);

Ap is the pressure drop;

q is the gas flow rate per unit planar or solid angle;

Ry, R are the coordinates of lower and upper boundaries, respectively;
s is the coordinate for ty =Ry/R;

u is the gas flow rate at upper boundary;

Uy is the minimum fluidization speed;

o, B are the parameters defined in (3);

vy is the apparent density of granular bed;

3 is the porosity;

7] is the angle between inclined walls or vertex angle of conical apparatus;
" is the coefficient of proportionality between normal stresses;

By is the viscosity;

vy is the kinematic viscosity;

& n are the parameters in (6);

i1 is the normal stress. A prime denotes the raised bed.
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DRYING IN HEATED GAS FLOWS

G. A, Aksel'rud, A. I. Chernyavskii, UDC 66,047
and Ya, N, Khanyk

A study has been made of the drying of a body by passage of a drying agent; various structures
have been used. A simple mathematical model is presented for this type of drying.

Much attention is being given to the drying of gas-permeable bodies by passage of a heat carrier through
a planar layer of material [1-4]. Usually, such a material has large internal channels and pores, in which the
hydraulic resistance is quite low [2]. It has been found that the drying is then considerably more rapid than
convective drying,

Particular interest attaches to research on drying of this type for materials differing considerably in
structure and type of water binding. We have examined various materials (felt, cardboard, nonwoven fabrics,
sheet asbestos, woven asbestos strip, and the like), which differ in nature and hydraulic resistance. The mea-
surements were made over a wide temperature range with widely varying pressure differences, the main work-
ing unit for the purpose being that shown in Fig. 1, which consists of two sections 1 and 2, which are separated
by the perforated baffle 3, Leakage around the edge is prevented by the sealing ring 4, which is compressed
by the cover 5. The drying is performed as follows. The wet specimen 6 of diameter 100 mm is set up in sec-
tion 1 on the perforated baffle 3, with a vacuum set up in section 2. The gas at a set temperature is supplied
to the surface of the specimen and passes through it as a result of the pressure difference.

Figure 2 shows results for felt, cardboard, and woven asbestos strip at 100°C and a pressure difference
of 65,000 N/m?. The kinetic curves indicate the mode of drying in the different groups of materials, which dif-
fer considerably in structure. '

The felt had coarse pores with low hydraulic resistance; the woven asbestos strips were much denser
and bound the water in a different fashion. Cardboard is a typical colloidal porous material dominated by
small capillaries, and it has the highest hydraulic resistance. Curve 1 reflects the drying of felt of thickness
10 mm and has three prominent parts. The first is rapid mechanical displacement of the water by the gas,
while the second and third are drying proper. About half of the water is eliminated during the first period.
Curve 2 represents the asbestos strip of thickness 10 mm, which takes the form of a classical curve with two
periods. Here mechanical displacement plays no definite part. Curve 3 indicates the drying of cardboard of
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