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The onset  of instability is considered for  a granular  bed in a plane-paral le l  or  conical sys tem,  
and the appropria te  cr i t ical  pa r ame te r s  are  calculated. 

A granular bed in a container of variable cross section becomes fluidized under certain conditions, and 
the critical pressure difference is of some interest because this differs considerably from the value for a bed 
of constant cross section. Particular practical interest attaches to devices converging downward [1, 2]. Here 
we describe a simple model for the onset of fluidization when the angle of the cone is not too large, with the 
result that the radial gas flux within a layer can be considered as very largely homogeneous. The main assump- 
tions are very largely derived from those of [3] for granular media flowing through conical bunkers. 

Figure I shows the bed; we assume that the gas flow in the bed is radially symmetrical, while the lower 
and upper boundaries are described by R 0 =const, R = const, respectively. These assumptions are closely re- 
lated and greatly simplify the analysis without altering the physical essence of the matter. In principle, it 
would be simple to consider a layer with planar boundaries, as has been done for granular media in conical 
bunkers [4, 5], but in that case the assumption of radial symmetry would become internally contradictory. 

For simplicity, we restrict consideration to the stresses in the bed in a simplified one-dimensional set- 
ting, as used in deriving Jansen's formula. We assume that the transverse normal stress a0 is proportional 
to the radial stress ar = a, the coefficient of proportionality being >t and characterizing the layer packing. We 
also assume that there is no adhesion between the particles and no residual stress that does not vanish when the 
force of gravity tends to zero. These factors [6, 7] can influence the fluidization conditions considerably in an 
apparatus with vertical walls, but in the Present instance they may be relatively unimportant by comparison 
with the effects of variation in the cross section and the retaining effect of the walls. 

Consider the equilibrium of an element (r, r + dr) in a planar layer; the condition for balance between 
the forces given 

0 {re (r) - -  (r -k  dr) e (r -p dr) -k- [ ~  (r) -b F (q, r) r] dr} - -  2 sin (0/2) ~lrdr -4- 2 k ~ t  (r) dr  ----- O. (1) 

Here it is assumed that the l imiting fr ict ion is attained at the walls;  the upper and lower signs r e fe r ,  r e s p e c -  
t ively,  to situations where the bed sinks downward or  converse ly  is impelled upward by the hydraulic forces .  
We assume 0 smal l ,  so 2 s i n ( 0 / 2 )  ~ 8 a n d  2 k / 0  >> 1 ,  a n d  (1)  gives 

2k ) 2k~ 
d(re) W=ma~r[F{q, r )--u m = z  T + l  ~ ....... (2) 

dr 0 

We use a two- te rm Erland formula [8] to r ep resen t  F(q, r) ,  i .e. ,  

F (q, r ) = c z  q -b [~ , ~z . . . .  
r 2 

3,5 1 - -  e do 
4 e 3 a 

(1 - -  ~)~ 
~3 a 2 (3) 

The flow rate q is reasonably smal l ,  so the force  of gravity produces mos t  of the state of s t r e ss  in the 
bed; then the upper sign is taken in (2), and the obvious boundary condition is a(R) = O; the solution to (2) then 
takes the fo rm 

a =  Y r 1-- r~-2 _ aq  . 1 1 - - R  m . (4) 
m - -  2 R m-2 m - -  1 R m-1 m r  

f 
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Fig. I .  T h e  apparatus. 

This describes the stress distribution in the bed when the gravitational forces predominate, and there is a 
maximum stress at some critical value of the coordinate, which is dependent on q [3-5]. Clearly (4) is mean- 
ingful only for q < ql, where the critical value ql is determined by the condition that the stress at the lower 
boundary of the layer becomes zero. The infiltration speed u = q/R at the upper boundary is introduced, and 

the corresponding critical value u i is then given by 

m 1 -- t'g - I  m 1 -- t'g--" 
u~ + ~to = 0, (5) m - i  l - t'g u, - nt~ -m _.2 2 1 - t,g 

w h e r e  the  s y m b o l s  are 

a 150 (1 - -  e]v 0 7 4e3 d t  a s ,  t o= R o  (6) 
= - -  ~ - -  ' 9 ] ] = - -  ~ - -  " " 

[~ 3,5 a [~ 3,5 d o R 

The  va lue  q i / R  0 c o r r e s p o n d i n g  to  u 1 a t  the l o w e r  b o u n d a r y  e x c e e d s  the  m i n i m u m  f l u i d i z a t i o n  s p e e d  u ,  d e -  
f i ned  by 

u~ + ~ u , - -  ~ = 0. (7) 

C o n s e q u e n t l y ,  t h e r e  i s  a r e g i o n  be low the l a y e r  in which  the h y d r a u l i c  f o r c e s  e x c e e d  the w e i g h t  of the p a r t i c l e s  

i f  q = qi. 

If  q > q i ,  the  s o l u t i o n  of (4) c e a s e s  to  be c o r r e c t  f o r  s o m e  r e g i o n  R 0 < r < r , ( q ) ;  i f  a s  b e f o r e  we  a s s u m e  
tha t  l i m i t i n g  f r i c t i o n  a p p l i e s  a t  the  w a l l s ,  then  the  s t r e s s  f o r  t h i s  r e g i o n  can  be d e r i v e d  by s o l v i n g  (2) wi th  the  
l o w e r  s i gn  in f r o n t  of  the  l a s t  t e r m  on the  l e f t  and wi th  the  b o u n d a r y  cond i t ion  ~(R0) = 0, which  g ives  

r = m -'k 2 r 1 rm+Z -+- - -  1 - -  - -  -t- - -  1 - -  �9 ' m - F 1  . r m+r m r  r m } (8) 

The  c r i t i c a l  va lue  of  the  c o o r d i n a t e  r ,  (q) i s  then  c a l c u l a t e d  f r o m  the cond i t ion  of e q u a l i t y  of the s t r e s s e s  d e -  
f i ned  by (4) and (8), which  r e s u l t s  in the  fo l lowing  equa t ion :  

1 (1 ~+'~ 
Rm-~ (9) 

1 r m - 1  1 R ~ ' + '  - -  2 . . . . . .  
---:~zq ~ 1 Rm_ 1 - k ~  1 rm.+ , m r ,  R m rm, 

The  r a n g e  of  a p p l i c a t i o n  of  (8) i n c r e a s e s  m o n o t o n i c a l l y  wi th  q un t i l  the  u p p e r  b o u n d a r y  r e a c h e s  the  u p p e r  
edge  of  the  l a y e r  a t  s o m e  c r i t i c a l  f low r a t e  q =q2 > ql ;  the  c o r r e s p o n d i n g  c r i t i c a l  s p e e d  u 2 =q2/R a t  the  u p p e r  
b o u n d a r y  s a t i s f i e s  

m 1 - -  t~+ l m 1 - -  ~+2 (10) 
"~-k- ~ - -  ~ u z - - q - -  O. u2 ~ m +  1 1 - - t  o m + 2  1 - - t ~  

143 



0 75 Re O 0,5 t o 

Fig. 2. a) Cri t ical  Reynolds number cor respond-  
ing to loss  of stability as a function of the Arch i -  
medes  number  Ar  for  t o ~ 0 and var ious  m: b) Re 
as a function for  t o for  var ious  Ar  for m = 2 (solid 
lines) and m = 3 (dashed lines). 

The s t r e s se s  are  everywhere  defined by (8) if q =q2, and they become zero  at both boundaries of the bed; it is 
c lear  that no equil ibrium state exists for  the bed if q > q2 (or u > u2), so u 2 may be taken as represent ing onset  
of fluidization. Note that this value is less  than the minimum fluidization speed defined by (7). 

It is convenient to put (10) in s tandard fo rm by introducing the Reynolds and Archimedes  numbers  as 
follows: 

R e =  2au2 , A~= 8a--~3 dl 
n ~0 do 

Then simple t ransformat ion  via (3) and (6) converts  (10) for e = 0.4 to 

m 1 - -  t ~ + t  m 
Re 2 + 5 1 . 4 -  Re - -  0.0366 - -  

m + l  1 - - t~  m + 2  

- -  g .  ( 1 1 )  

1 - - / ~ + 2  
l - - t 7  A r = 0 .  (12) 

This equation simplifies somewhat in the important  par t icu lar  case t o << 1 provided that 0 ~ 0 (m -~ ~), i .e. ,  
for an equipment with ver t ica l  walls ,  whereupon (12) takes a standard form [9]: 

Re ~ + 51ARe + 0.0366Ar = 0. (13) 

We p rocess  (12) as for  (13) in [10] to get a simplified formula:  

Ar 
R e -  m+2 (m+2 1-t  (14) 

1 4 0 0 - -  t~+2 + 5.22 - -  m + l  1- -  m 1-- t~+ 2 Ar 

This formula coincides with that der ived in [10] for  m --~ ~; the relationship between the cr i t ical  Re and Ar im-  
plied by (12) is shown in Fig. 2a for  var ious  m for the limiting case t o --* 0. Figure 2b shows Re as a function 
of t o for two values of m and var ious  At .  

The model of [11] implies that the fluidized state should occur  when ql is reached,  because then a point 
appears  where the normal  s t r e s s  is zero.  In fact ,  the t ransi t ion extends up to the second cr i t ical  flow rate 
q2, which corresponds  to stability loss  in the bed as a whole, and this value may exceed ql substantially,  p a r -  
t icular ly  for  to small .  

The following is the p r e s s u r e  difference ac ros s  the bed for  q < q2:  

R 

Ro 

The cr i t ical  p r e s su re  difference for  stability loss is then derived for q = q2, the resul t  being ve ry  much de-  
pendent on the size R 0 of the base of the bed; the lat ter  is ref lected in empir ica l  formulas  for Ap, as in [1, 2]. 

F r o m  (15) we readily get simplified formulas  that apply approximately in various par t icular  situations. 
For  instance,  if the par t ic les  are  not too smal l ,  with the resul t  that the second t e rm in (3) is no less  impor -  
tant than the f i r s t ,  we have that the second t e r m  in (15) plays the main par t  for R 0 << R,  and the height of the 
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bed is H ~ R. The width of the base of the bed is L ~ 2R0tan(0/2), which gives us the following formula for the 
cr i t ical  p r e s s u r e  difference:  

AP~[[$u~,HI (2H tgO / L ) (16) 

(u 2 has here  been replaced by u . ,  which involves a smal l  e r r o r ) ,  and the cofactor in the brackets  is the c r i t i -  
cal p r e s s u r e  difference for  a bed with ver t ica l  boundaries.  A formula  of the same type has been suggested 
elsewhere [2]. 

In the above we have considered an e lement  of a bed in a t r iangular  bunker with inclined walls;  all the r e -  
suits are  however readily extended to a bed in an axially symmet r i ca l  cone. If q denotes the flow in unit solid 
angle, the above approximations for  r give us instead of (2) that 

d(r2(~) :~ 2mr(r=r,. ~ ~-~ q- ~ - - y  , (17) 
dr 

with m still defined by (2), while O is now the angle of the cone. 

The analogs of (4) and (8) are  correspondingly 

7r (1 r~-3  ) ~q (1 r ~ - I  ) [~q~" (1 r~+l ) ,  (18) 
(r ~- 2m - -  3 R ~-a  (2m - -  1) r R ~ -1  (2m + I) r a R ~+x 

( R~~ ) uq ( R~o m+l ) ~q~ ( R~ "-1 ) 
7r 1 -+- 1-- r~.,+t q-(2m 1 ~  1 r~_  1 �9 (19) cr --= 2m -- 3 r zm+a (2m + 1) r 

The l inear  velocity at the upper boundary of the bed is now defined by u =q /R  2, while the cr i t ical  value u 2 
is obtained subject to the condition that (19) becomes zero for  r =R. We use (11) to get instead of (12) in that 
case that 

2 r a - - I  1--t~m+l 2 m - - I  1--t~m+a Ar=0 .  (20) 
Re 2 + 51.4 ~ - -  Re- -  0.0366 - -  

2m q- 1 1 - -  to'n-1 2m + 3 1 - -  t~ " - I  

This express ion  again becomes (13) for  m -* :o, which applies for an equipment with ver t ica l  wails. A general  
form of the relat ionship of Re to t o and Ar  corresponding to (20) is as shown in Fig. 2. 

The p r e s s u r e  difference ac ros s  the axially symmet r i ca l  layer  is 

R 
~q ~q~ ~ dr = ~q + 

ap=  ~ +  e / Ro R ~ Rg , (21) 
Ro 

A formula of the type of (16) is obtained for a bed of reasonably small  par t ic les  if/Jq << ~R~ and R 0 << R. 

If we neglect the fr ict ional  fo rces  at the wall ,  then the resul t  for a granular  bed in a conical system has 
been derived previously  [12], where the cr i t ical  flow speed corresponding to loss of stability was defined f rom 
the condition for balancing the weight of the bed (as co r rec ted  for the upthrust). It is c lear  that the situation 
with vanishingly small  fr ict ion is descr ibed by the above formulas  ff we take the par t icular  case m = 0. The 
equation for the Reynolds number corresponding to the onset  of fluidization derived f rom (20) with m = 0 coin- 
cides with the equation derived f rom [12] for 8 small .  Figure 2a shows that any increase  in the friction at the 
wall tends to increase  this number ,  so the value calculated without correc t ion  for the frict ion must  be some-  
what too low. This is confirmed to some extent by the data of [13], in which measurements  were compared 
with calculations f rom various sources .  

The state of the bed after stability loss (i.e., for  q > q2) cannot be descr ibed within the f ramework  of this 
theory;  however ,  it is possible to have two limiting situations if q is not too greatly in excess of the cr i t ical  
value,  and these we discuss  briefly.  F i r s t  of all,  the layer  as a whole may remain  immobile but shift upward 
by an amount such that the new boundaries are  descr ibed by the coordinates R~ > R 0 and R' > R, with the condi- 
tion for constancy of volume of the bed giving R '2 - R~ 2 =R 2 - R 2 if we neglect any possible change in the p ro -  
portion of voids. The second equation needed to determine R' and R~ as a function of q is derived by setting 
the s t ress  at the upper boundary r = R '  equal to zero.  This s t ress  at the upper boundary is still described by 
(8) or  (19) with q > q2, but with R 0 replaced by R~. 
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Fig. 3. a) Cri t ical  flow rate Q2 = 0q2 (m3/h) 
as a function of height of granular  bed H (cm) 
for  var ious  0; b) p re s su re  difference Ap (kgf/ 
cm 2) as a function of flow rate Q =Oq (m3/h) for 
var ious  0. The solid lines are f rom theory,  
while  the points are f rom exper iment  for 0 as 
follows: 1) 10~ 2) 15; 3) 20; the points 4 r e p r e -  
sent a gas jet  breaking through the immobile 
bed. 

The behavior of this equation for rea l i s t ic  m indicates that t = R ~ R '  increases  rapidly f rom the small  ini- 
tial value t o as q inc reases ,  par t icu lar ly  over  a narrow range immediately to the r ight of q2; correspondingly,  
there  is a rapid increase  in R~, with the resu l t  that the p r e s s u r e  difference is still defined by (15) or (21), a l -  
though for  q > q2 the resul t  is a very  rapidly decreas ing  function of q. 

The existence of this state requi res  that the lower surface is stable against  fall of individual par t ic les ;  
it is c lear  [14] that this requi res  that the relat ive velocity of the gas is on the order  of the entrainment  speed 
(is less  than the la t ter  by not more  than a factor  2-3). It is c lear  that this condition is violated as R b in- 
c r ea se s ,  so the lower surface becomes unstable,  with the consequence that the lower par t  of the bed or  even 
the entire bed becomes essent ia l ly  fluidized. It is c lear  that this stage can be attained if q is increased suffi-  
ciently slowly provided that the coefficient of dynamic fr ict ion at the walt is not much less  than the static value. 
If these conditions are  not met ,  the bed suddenly jumps upward when the point q = q2 is reached,  and random 
per turbat ions  that prevent  the format ion of a sharp  lower boundary may become very  strong. In that case ,  the 
second limiting state is more  probable,  in which the upper pa r t  of the bed is immobile,  while the lower par t  is 
fluidized. The stability is then lost  when q inc reases  fur ther ,  with the resul t  that the entire bed becomes 
fluidized or  a jet  sys tem is set up within the apparatus.  

The above general  picture is confirmed by t r ia ls  on fluidization of a granular  bed in a trough with sloping 
sides. The bed consisted of polystyrene par t ic les  of d iameter  2.5 mm,  while 0 took the values 10, 15, 20, 
and 30 ~ The air  was injected through a slot of width 2 mm,  while the length of the trough was  100 ram; the 
height of the bed var ied  within wide limits.  The cr i t ical  flow rate  0q2 and the p re s su re  differences ac ross  the 
bed before and after  onset of instability were  determined.  Figure 3 compares  the theoret ical  resul ts  with the 
measurements .  The calculations were based on e = 0.4, while k~ was determined f rom a single experiment.  
Figure 3 shows sa t i s fac tory  agreement.  

If the flow rate is gradually increased  above the cr i t ical  value, the layer  of mater ia l  r i s e s  as a solid 
body without any appreciable signs of loss of continuity; the lower boundary is at f i r s t  stable, with just  a few 
par t ic les  circulat ing in the space under the bed. A fur ther  increase  in the flow rate  produces a new upward 
shift, with some part ia l  loss of stability in the lower boundary (more circulat ing par t ic les) ,  and the proport ion 
of these continues to increase  with q until there is no longer a c l ea r -cu t  division between the fluidized and un- 
fluidized par ts .  Channels can ar ise  before the value q ,  =u .R  is reached,  which may penetrate to the upper 
par t ,  and periodic bubbles break  through to the upper surface as q is increased fur ther ,  after  which a s teady-  
state fountain sets in. Figure 4 shows charac te r i s t i c  pic tures  reflect ing the state of the bed. These various 
types of fluidization have also been reported elsewhere [13]. 

These considerat ions can also be used in approximate analysis  of a horizontally unbounded bed injected 
with a gas jet;  the gas enters  through a slot or  hole into the base of the bed, which is accompanied by the 
formation of cavit ies containJ~ng rapidly circulat ing par t ic les ,  whose size increases  with the gas flow rate.  
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Fig. 4. The charac te r i s t i c  s ta t e s  of a granu-  
lar  bed, photographs a r ranged  in o rder  of in- 
c reas ing  flow rate.  

When these cavities attain about 70% of the height of the bed, there is a tendency for them to break through to 
the surface and produce a stable fountain. The state before breakdown is one with the bed dis tor ted,  with a 
convex area on the surface of the bed. 

Most of the gas passes  through the bed near  the walls ,  and the deformed area on the surface corresponds  
to the base of the bed. There  is thus a clear  analogy between the above cavities and the space under the immo-  
bile par t  of the bed in a conical or  through sys tem,  and the above equations can be applied as an approximation. 
This approach is also justified by a compar ison of the observed and theoret ical  relat ionships for the cr i t ical  
flow rate corresponding to breakthrough of a jet  f rom a slot (Fig. 3a). The f i r s t  curve was derived in exper i -  
ments  with beds of the above polystyrene par t ic les ;  the second was calculated f rom the above formulas  with the 
observed 8 of 25 ~ while the coefficient of f r ic t ion k was taken as pa ramete r .  Here again the agreement  be-  
tween theory and exper iment  was sat isfactory.  
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NOTATION 

is the par t ic le  radius;  
are  the density of gas and par t ic le  mater ia l ;  
is the hydraul ic  force ;  
is the acce lera t ion  due to gravity;  
is the height of bed; 
is the wall fr ict ion coefficient;  
is the t r ansve r se  size of lower boundary; 
is the p a r a m e t e r  in (2); 
is the p re s su re  drop; 
is the gas flow rate per  unit p lanar  or  solid angle; 
are  the coordinates of lower and upper boundaries,  respect ively;  
is the coordinate for t o =R0/R; 
is the gas flow rate at upper boundary; 
is the minimum fluidization speed; 
are  the p a r a m e t e r s  defined in (3); 
is the apparent  density of granular  bed; 
is the porosi ty ;  
is the angle between inclined walls or  ver tex  angle of conical apparatus;  
is the coefficient of proport ional i ty  between normal  s t r e s s e s ;  
is the v iscos i ty ;  
is the kinematic v iscos i ty ;  
are the pa rame te r s  in (6); 
is the normal  s t ress .  A pr ime denotes the ra i sed  bed. 
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A study has  been made of the dry ing  of a body by pa s sage  of a drying agent; va r ious  s t ruc tu r e s  
have been used.  A s imple  ma thema t i ca l  model  is  p re sen ted  for  this type of d r y i n g .  

Much attention is being given to the drying of g a s - p e r m e a b l e  bodies by pa s sage  of a heat  c a r r i e r  through 
a p lanar  l aye r  of m a t e r i a l  [1-4]. UsuaUy, such a m a t e r i a l  has  l a rge  internal  channels and p o r e s ,  in which the 
hydraul ic  r e s i s t a n c e  is quite low [2]. It  has  been found that  the drying is then considerably  m o r e  rapid  than 
convect ive drying.  

P a r t i c u l a r  i n t e r e s t  a t taches  to r e s e a r c h  on dry ing  of this type for  m a t e r i a l s  d i f fer ing cons iderably  in 
s t ruc tu re  and type of wa te r  binding. We have examined  var ious  m a t e r i a l s  (felt, ca rdboard ,  nonwoven f ab r i c s ,  
sheet  a s b e s t o s ,  woven a sbes to s  s t r ip ,  and the l ike) ,  which dif fer  in nature  and hydraul ic  r e s i s t ance .  The m e a -  
s u r e m e n t s  we re  made over  a wide t e m p e r a t u r e  range  with widely va ry ing  p r e s s u r e  d i f fe rences ,  the main  w o r k -  
ing unit for  the purpose  being that  shown in Fig. 1, which cons is t s  of two sect ions  1 and 2, which a r e  s epa ra t ed  
by the pe r fo r a t ed  baffle 3. Leakage around the edge is p reven ted  by the seal ing r ing 4, which is c o m p r e s s e d  
by the cover  5. The drying is p e r f o r m e d  as follows. The wet  spec imen  6 of d i ame te r  100 m m  is se t  up in s e c -  
t ion 1 on the p e r f o r a t e d  baffle 3, with a vacuum se t  up in sect ion 2. The gas at  a se t  t e m p e r a t u r e  is supplied 
to the sur face  of the spec imen  and p a s s e s  through it as a r e su l t  of the p r e s s u r e  difference.  

Figure  2 shows r e su l t s  for  fel t ,  c a r d b o a r d '  and woven asbes tos  s t r ip  at 100~ and a p r e s s u r e  difference 
of 65,000 N/m 2. The kinetic curves  indicate the mode of drying in the di f ferent  groups of m a t e r i a l s ,  which dif -  
f e r  cons iderably  in s t ruc tu re .  

The fe l t  had coa r se  po res  with low hydraul ic  r e s i s t ance ;  the woven a sbes tos  s t r i p s  we re  much dense r  
and bound the wa te r  in a d i f ferent  fashion. Cardboard  is a typical  colloidal porous  m a t e r i a l  dominated by 
sma l l  cap i l l a r i e s ,  and it has the h ighes t  hydraul ic  r e s i s t ance .  Curve 1 re f l ec t s  the drying of fe l t  of th ickness  
10 m m  and has  three  p rominen t  pa r t s .  The f i r s t  is rapid  mechanica l  d i sp lacemen t  of the wa te r  by the gas ,  
while the second and thi rd  a re  drying p rope r .  About half  of the wa te r  is e l iminated during the f i r s t  per iod.  
Curve 2 r e p r e s e n t s  the a sbes tos  s t r ip  of th ickness  10 m m ,  which takes  the f o r m  of a c lass ica l  curve with two 
per iods .  Here  mechan ica l  d i sp lacemen t  plays  no definite par t .  Curve 3 indicates  the drying of ca rdboard  of 
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